Weight-regain la gestione farmacologica #### Gianluca Perseghin Dipartimento di Medicina e Chirurgia - Università degli Studi di Milano Bicocca Dipartimento di Medicina Interna e Riabilitazione - Policlinico di Monza, Monza ### **Conflict of Interest** #### Honorarium as a speaker in Scientific Events AstraZeneca Bayer Boheringer Ingelheim Daiichi Sankyo **Echosens** Lilly Menarini Diag **MSD** **Novartis** Novo Nordisk PikDare Roche Diag Sanofi Servier #### **Scientific advisory boards** AstraZeneca Intercept Lilly Merck **Novartis** Novo Nordisk Pfizer PikDare Sanofi ### Weight loss – treat to target From: Management of Hyperglycemia in Type 2 Diabetes, 2022, A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2022:45(11):2753-2786. doi:10.2337/dci22-0034 #### USE OF GLUCOSE-LOWERING MEDICATIONS IN THE MANAGEMENT OF TYPE 2 DIABETES HEALTHY LIFESTYLE BEHAVIORS: DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT (DSMES): SOCIAL DETERMINANTS OF HEALTH (SDDH) # For GLP-1 RA. CVOTs demonstrate their efficacy in reducing composite MACE. CV death, all-cause mortality, MI. stroke, and renal endpoints in individuals with T2D with established/high risk of CVD. Use of glucose-lowering medications in the management of type 2 diabetes. ACEi, angiotensin-converting enzyme inhibitor; ACR, albumin/creatinine ratio; ARB, angiotensin receptor blocker; ASCVD, atherosclerotic cardiovascular disease: CGM, continuous glucose monitoring; CKD, chronic kidney disease; CV, cardiovascular; CVD, cardiovascular disease; CVOT, cardiovascular outcomes trial; DPP-4i, dipeptidyl peptidase 4 inhibitor; eGFR, estimated glomerular filtration rate; GLP-1 RA, glucagon-like peptide 1 receptor agonist; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HHF, hospitalization for heart failure; MACE, major adverse cardiovascular events; MI, myocardial infarction; SDOH, social determinants of health; SGLT2i, sodium-glucose cotransporter 2 inhibitor; T2D, type 2 diabetes; TZD, thiazolidinedione. ## Greater weight loss is associated with better health outcomes ^{*}T2D remission rates have been found to plateau at 20–25% total weight loss where 25% total weight loss did not confer additional benefits; BP, blood pressure; CV, cardiovascular; GERD, gastro-oesophageal reflux disease; HbA1c, glycated hemoglobin; HFPEF, heart failure with preserved ejection fraction; NAFLD; non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; OSAS, obstructive sleep apnoea syndrome; PCOS, polycystic ovary syndrome; PwO, people with obesity; T2D, type 2 diabetes; TG, triglycerides. 1. Horn D et al. Postgrad Med. 2022;134:359–75; 2. Garvey WT et al. Endocr Pract. 2016;22(Suppl. 3):1–203; 3. Look AHEAD Research Group, Gregg EW et al. Lancet Diabetes Endocrinol. 2016;4:913–21; 4. Lean ME et al. Lancet. 2018;391:541–51; 5. Sundström J et al. Circulation. 2017;135:1577–85; ## 2 problems 1) T2DM patients lose less weight 2) Weight regain ## Problem 1: T2DM pats loose less ### Metabolic and Psychological Features are Associated with Weight Loss 12 Months After Sleeve Gastrectomy ``` Emanuele Muraca,¹ Alice Oltolini,¹ Alberto Binda,² Mattia Pizzi,³ Stefano Ciardullo,^{1,4} Giuseppina Manzoni,¹ Francesca Zerbini,¹ Eleonora Bianconi,¹ Rosa Cannistraci,^{1,4} Silvia Perra,¹ Pietro Pizzi,³ Guido Lattuada,¹ Gianluca Perseghin,^{1,4} and Matteo Villa² ``` was considered. Multivariable stepwise regression analysis showed that younger age, lower impulsiveness, higher-than-normal urinary free cortisol, and lower HbA1c were associated with higher %TWL, explaining about 31.5% of the weight loss. ## Problem 1: T2DM, IFG/IGT pats loose less **TABLE 3.** 24 months follow-up weight loss in the study population segragated by glucose tolerance condition | | | Entire population | NOR | IFG | T2DM | |---------|-----------|-------------------|----------------------------|--------------------------|-------------| | | 6 months | 25.3 ± 6.8 | 27.3 ± 6.8 ^{c,d} | 24.7 ± 6.6 | 23.4 ± 7.1 | | TWL (%) | 12 months | 31.7 ± 8.7 | 35.3 ± 8.5 c,d | 31.0 ± 8.1 | 27.9 ± 9.1 | | | 24 months | 32.4 ± 11.5 | 38.1 ± 11.3 ^{c,d} | 31.6 ± 11.0 b | 26.4 ± 10.3 | | | | | | | | | | 6 months | 11.6 ± 3.5 | 12.6 ± 3.3 a,d | 11.3 ± 3.5 | 10.7 ± 3.3 | | DBMI | 12 months | 14.7 ± 4.6 | 16.5 ± 4.2 ^{c,d} | 14.3 ± 4.5 | 13.0 ± 4.4 | | | 24 months | 15.2 ± 6.0 | 18.0 ± 5.3 ^{c,d} | 14.7 ± 6.0 | 12.4 ± 5.5 | | | | | | | | | EWL (%) | 6 months | 57.8 ± 18.5 | 61.8 ± 19.2 ^b | 56.3 ± 17.4 | 54.5 ± 18.8 | | | 12 months | 71.7 ± 22.3 | 78.7 ± 23.0 a,d | 70.7 ± 20.5 | 63.3 ± 21.8 | | | 24 months | 72.5 ± 26.6 | 84.0 ± 25.9 a,d | 71.6 ± 24.7 ^b | 59.2 ± 24.1 | Pearson chi-square test with post hoc Bonferroni adjustment was used for categorical variables. Kruskal-Wallis test and Dunn-Bonferroni approach for pairwise comparison or ANOVA test and post hoc Sidak-Bonferroni test was applied for continuos variables. TWL = total weight loss, BMI = body mass index, EWL = excess weight loss ## Sleeve gastrectomy 2 years follow-up **Muraca E et al (in preparation)** a p \leq 0.05 vs IFG ^b p ≤ 0.05 vs T2DM $^{^{}c}$ p \leq 0.01 vs IFG ^d p ≤ 0.01 vs T2DM ### Obesity is a relapsing disease #### **Maintenance of weight loss** Nordmo et al. Obes Rev, 2019 Fothergill E et al Obesity, 2016 Sumithran P et al N Engl J Med, 2011 ### Bariatric surgery is also associated with weight re-gain Adams et al, N Engl J Med 2017 Cooper TC et al, Obes Surg 2015 Efficacy of Liraglutide 3.0 mg in Patients with Prior Bariatric Surgery Median weight at each time point 50% of participants achieved a 28-week weight lower than their nadir post-surgical weight **-7.1** % -9.7 % RYGB, roux-en-Y gastric bypass; LSG, laparoscopic sleeve gastrectomy; VBG, vertical banded gastroplasty; AGB adjustable gastric band. ## Liraglutide 3.0 mg or Surgical Revision in Long-Term Weight Regain After RYBG #### LSG + liraglutide 3.0 mg for patients desiring further weight loss #### **ORIGINAL CONTRIBUTIONS** #### Efficacy of High-dose Liraglutide 3.0 mg in Patients with Poor Response to Bariatric Surgery: Real-world Experience and Updated **Meta-analysis** Federica Vinciguerra ¹ • Carla Di Stefano² · Roberto Baratta³ · Alfredo Pulvirenti⁴ · Giuseppe Mastrandrea⁵ · Luigi Piazza² · Fabio Guccione⁶ · Giuseppe Navarra⁶ · Lucia Frittitta^{1,7} | | | BW 6 | months | | BW | baseline | | | | | |--|---------------------|--------|---------|-------|--------|----------|--------------------|--------|-----------------|--------| | Study | Total | Mean | SD | Total | Mean | SD | Mean Difference | MD | 95%-CI | Weight | | Horber FF et al. 2021 | 34 | | 12.0000 | | 84.00 | 13.0000 | | -7.00 | [-12.95; -1.05] | 17.6% | | Elhag W et al. 2021 | 107 | 91.01 | 17.3000 | 107 | 96.75 | 18.6500 | - - | -5.74 | [-10.56; -0.92] | 26.8% | | Rye P et al.2018 | 20 | 105.59 | 27.4900 | 20 | 117.92 | 27.9500 | | -12.33 | [-29.51; 4.85] | 2.1% | | Vinciguerra F et al. 2023 | 59 | 93.30 | 17.6000 | 59 | 101.80 | 17.9000 | | -8.50 | [-14.91; -2.09] | 15.2% | | Mok J et al. 2023 | 35 | 106.60 | 23.6000 | 35 | 116.10 | 23.6000 | | -9.50 | [-20.56; 1.56] | 5.1% | | Current work | 114 | 91.52 | 16.4900 | 119 | 100.96 | 17.2400 | - | -9.44 | [-13.77; -5.11] | 33.2% | | Common effect model
Heterogeneity: $I^2 = 0\%$, τ^2 | 369 = 0, p = | 0.89 | | 374 | | | <u></u> | -7.94 | [-10.44; -5.44] | 100.0% | | | | | | | | | -20 -10 0 10 20 | | | | | MD | 95%-CI | Weight | |-----------------|--|--| | -5.74
-12.33 | [-12.95; -1.05]
[-10.56; -0.92]
[-29.51; 4.85]
[-14.91; -2.09]
[-20.56; 1.56]
[-13.77; -5.11] | 17.6%
26.8%
2.1%
15.2%
5.1%
33.2% | | -7.94 | [-10.44; -5.44] | 100.0% | ### Obesity is a relapsing disease #### **Maintenance of weight loss** #### The Role of Pharmacotherapy #### **Pre Bariatric Surgery** - 1. Treat Metabolic Syndrome: - ↑ EWL post-op ¹ - ↓ Reduce hospital stay ¹ - **↓** Post-op complications ² - 2. Reduce Risk in Anesthesia - 3. BMI > 65* pre-surgical weight loss is mandatory to reduce intra-abdominal volume and achieve operability ³ - 4. Patients non-responsive to lifestyle intervention ⁴ ^{*} BMI > 55 main risk factor for unfavourable outcomes (SICOB guidelines 2016) #### **Post Bariatric Surgery** - Weight Regain ⁵ (≥ 25 weight loss) - 2. Insufficient Weight Loss ⁵ (< 50% EWL) - 3. Patients desiring further weight loss ⁶ Patients with no indication for bariatric surgery ⁷ (BMI < 40): endoscopic surgery #### Stepped approach to obesity management BMI 35-39.9 kg/m² BMI 25-26.9 kg/m² BMI 27-29.9 kg/m² BMI 30-34.9 kg/m² BMI ≥40 kg/m² When optimal medical Surgery With and behavioural adiposity-related complications management has been insufficient Pharmacotherapy With adiposity-related complications Behavioural modification All individuals, regardless of body size or composition, benefit from a healthy, well-balanced eating pattern and regular physical activity BMI, body mass index. ## Bariatric surgery is the most effective treatment for sustained weight loss in morbid obesity GLP-1, glucagon-like peptide 1; OSA, obstructive sleep apnea: PYY, peptide YY. ## Liraglutide 3.0 mg #### What is GLP-1? - GLP-1 is a peptide comprised of 31 amino acids - Member of incretin family - Secreted predominantly from L-cells in the gut, but also the brain (nucleus tractus solitarius) Human endogenous GLP-1 Enzymatic degradation by DPP-4 $t_{1/2}$ =1.5-2 min #### **GLP-1** is released in response to food intake ### **GLP-1** secretion and receptor expression **GLP-1R** is expressed in: **GLP-1** is secreted by: Neurons in Brain hindbrain L-cells of Lung the gut Heart (AV node) Pancreas Kidney GI tract ### **GLP-1** increases satiety and reduces hunger In normal weight subjects Infusion increased plasma GLP-1 from 10 pmol/L to 60-90 pmol/L ^{*}At an ad libitum lunch during GLP-1 or saline infusion in 19 healthy normal-weight male subjects. Data are mean ± SEM. GLP-1, glucagon-like peptide-1; SEM, standard error of mean Adapted from: Flint et al. J Clin Invest 1998;101:515-20 ## Il GLP-1 ha valore clinico limitato per la sua breve emivita Inattivazione proteolitica da parte di DPP-IV Clivaggio enzimatico Clearance elevata (4–9 L/min) $t_{1/2}$ =1.5-2.1 min (bolo ev 2.5-25.0 nmol/L) ## Liraglutide is a once-daily, human GLP-1 analogue $(T_{1/2}=13 h)$ DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; PK, pharmacokinetics; T_{1/2}, plasma half-life ## Liraglutide 3.0 mg es. h: 1.61 m, w: 70 kg **Overweight** BMI \geq 27 kg/m² + ≥ 1 comorbidities [such as dysglycaemia (prediabetes or T2D), hypertension, dyslipidaemia or OSAS] Obesity BMI \geq 30 kg/m² es. h: 1.61 m, w: 78 kg #### Liraglutide increases satiety and reduces hunger Via neurons in the arcuate nucleus #### The Role of Pharmacotherapy #### Pre Bariatric Surgery #### 1. Treat Metabolic Syndrome: - ↑ EWL post-op ¹ - ♣ Reduce hospital stay ¹ - ↓ Post-op complications ² - 2. Reduce Risk in Anesthesia - 3. BMI > 65 pre-surgical weight loss is mandatory to reduce intra-abdominal volume and achieve operability ³ - 4. Patients non-responsive to lifestyle intervention ⁴ ^{*} BMI > 55 main risk factor for unfavourable outcomes (SICOB guidelines 2016) ### Change in body weight (%) SCALE Obesity and Prediabetes: 0-56 weeks FAS, fasting visit data only. Line graphs are observed means (±SE). Statistical analysis is ANCOVA. FAS, full analysis set; LOCF, last observation carried forward; SE, standard error Lifestyle intervention: -500 kcal/day diet + 150 min/week physical activity #### Categorical weight loss SCALE Obesity and Prediabetes: At week 56 Data are observed means for the full analysis set (with LOCF) and the odds ratios (OR) shown are from a logistic regression analysis (the analysis for achieving 15% weight loss was performed post hoc). LOCF, last observation carried forward; OR, odds ratio #### Visceral fat and ectopic fat reduction by MRI One mechanism associated with benefits on infertility #### Change in fasting glucose and fasting insulin SCALE Obesity and Prediabetes: At week 172 #### The Role of Pharmacotherapy #### **Post Bariatric Surgery** - .. Weight Regain ⁵ (≥ 25 weight loss) - 2. Insufficient Weight Loss ⁵ (< 50% EWL) - 3. Patients desiring further weight loss ⁶ Patients with no indication for bariatric surgery ⁷ (BMI < 40): endoscopic surgery ## Liraglutide 3.0 mg in inadequate weight loss (IWL) or weight regain (WR) after primary or revisional surgery - 22% inadequate weight loss - 78% weight regain Liraglutide start: 56 months postop - 42% inadequate weight loss - 58% weight regain Liraglutide start: 42 months postop RYGB, Roux-en-Y gastric bypass; LSG, laparoscopic sleeve gastrectomy; LAGB, laparoscopic adjustable gastric banding; SADI, single-anastomosis duodeno-ileal bypass. ## Endoscopic sleeve gastroplasty plus liraglutide 3.0 mg vs endoscopic sleeve gastroplasty alone for weight loss