

Weight-regain la gestione farmacologica

Gianluca Perseghin

Dipartimento di Medicina e Chirurgia - Università degli Studi di Milano Bicocca Dipartimento di Medicina Interna e Riabilitazione - Policlinico di Monza, Monza

Conflict of Interest

Honorarium as a speaker in Scientific Events

AstraZeneca

Bayer

Boheringer Ingelheim

Daiichi Sankyo

Echosens

Lilly

Menarini Diag

MSD

Novartis

Novo Nordisk

PikDare

Roche Diag

Sanofi

Servier

Scientific advisory boards

AstraZeneca

Intercept

Lilly

Merck

Novartis

Novo Nordisk

Pfizer

PikDare

Sanofi

Weight loss – treat to target

From: Management of Hyperglycemia in Type 2 Diabetes, 2022, A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

Diabetes Care. 2022:45(11):2753-2786. doi:10.2337/dci22-0034

USE OF GLUCOSE-LOWERING MEDICATIONS IN THE MANAGEMENT OF TYPE 2 DIABETES

HEALTHY LIFESTYLE BEHAVIORS: DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT (DSMES): SOCIAL DETERMINANTS OF HEALTH (SDDH)

For GLP-1 RA. CVOTs demonstrate their efficacy in reducing composite MACE. CV death, all-cause mortality, MI. stroke, and renal endpoints in individuals with T2D with established/high risk of CVD.

Use of glucose-lowering medications in the management of type 2 diabetes. ACEi, angiotensin-converting enzyme inhibitor; ACR, albumin/creatinine ratio; ARB, angiotensin receptor blocker; ASCVD, atherosclerotic cardiovascular disease: CGM, continuous glucose monitoring; CKD, chronic kidney disease; CV, cardiovascular; CVD, cardiovascular disease; CVOT, cardiovascular outcomes trial; DPP-4i, dipeptidyl peptidase 4 inhibitor; eGFR, estimated glomerular filtration rate; GLP-1 RA, glucagon-like peptide 1 receptor agonist; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HHF, hospitalization for heart failure; MACE, major adverse cardiovascular events; MI, myocardial infarction; SDOH, social determinants of health; SGLT2i, sodium-glucose cotransporter 2 inhibitor; T2D, type 2 diabetes; TZD, thiazolidinedione.

Greater weight loss is associated with better health outcomes

^{*}T2D remission rates have been found to plateau at 20–25% total weight loss where 25% total weight loss did not confer additional benefits;

BP, blood pressure; CV, cardiovascular; GERD, gastro-oesophageal reflux disease; HbA1c, glycated hemoglobin; HFPEF, heart failure with preserved ejection fraction; NAFLD; non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; OSAS, obstructive sleep apnoea syndrome; PCOS, polycystic ovary syndrome; PwO, people with obesity; T2D, type 2 diabetes; TG, triglycerides. 1. Horn D et al. Postgrad Med. 2022;134:359–75; 2. Garvey WT et al. Endocr Pract. 2016;22(Suppl. 3):1–203; 3. Look AHEAD Research Group, Gregg EW et al. Lancet Diabetes Endocrinol. 2016;4:913–21; 4. Lean ME et al. Lancet. 2018;391:541–51; 5. Sundström J et al. Circulation. 2017;135:1577–85;

2 problems

1) T2DM patients lose less weight

2) Weight regain

Problem 1: T2DM pats loose less

Metabolic and Psychological Features are Associated with Weight Loss 12 Months After Sleeve Gastrectomy

```
Emanuele Muraca,<sup>1</sup> Alice Oltolini,<sup>1</sup> Alberto Binda,<sup>2</sup> Mattia Pizzi,<sup>3</sup> Stefano Ciardullo,<sup>1,4</sup> Giuseppina Manzoni,<sup>1</sup> Francesca Zerbini,<sup>1</sup> Eleonora Bianconi,<sup>1</sup> Rosa Cannistraci,<sup>1,4</sup> Silvia Perra,<sup>1</sup> Pietro Pizzi,<sup>3</sup> Guido Lattuada,<sup>1</sup> Gianluca Perseghin,<sup>1,4</sup> and Matteo Villa<sup>2</sup>
```

was considered. Multivariable stepwise regression analysis showed that younger age, lower impulsiveness, higher-than-normal urinary free cortisol, and lower HbA1c were associated with higher %TWL, explaining about 31.5% of the weight loss.

Problem 1: T2DM, IFG/IGT pats loose less

TABLE 3. 24 months follow-up weight loss in the study population segragated by glucose tolerance condition

		Entire population	NOR	IFG	T2DM
	6 months	25.3 ± 6.8	27.3 ± 6.8 ^{c,d}	24.7 ± 6.6	23.4 ± 7.1
TWL (%)	12 months	31.7 ± 8.7	35.3 ± 8.5 c,d	31.0 ± 8.1	27.9 ± 9.1
	24 months	32.4 ± 11.5	38.1 ± 11.3 ^{c,d}	31.6 ± 11.0 b	26.4 ± 10.3
	6 months	11.6 ± 3.5	12.6 ± 3.3 a,d	11.3 ± 3.5	10.7 ± 3.3
DBMI	12 months	14.7 ± 4.6	16.5 ± 4.2 ^{c,d}	14.3 ± 4.5	13.0 ± 4.4
	24 months	15.2 ± 6.0	18.0 ± 5.3 ^{c,d}	14.7 ± 6.0	12.4 ± 5.5
EWL (%)	6 months	57.8 ± 18.5	61.8 ± 19.2 ^b	56.3 ± 17.4	54.5 ± 18.8
	12 months	71.7 ± 22.3	78.7 ± 23.0 a,d	70.7 ± 20.5	63.3 ± 21.8
	24 months	72.5 ± 26.6	84.0 ± 25.9 a,d	71.6 ± 24.7 ^b	59.2 ± 24.1

Pearson chi-square test with post hoc Bonferroni adjustment was used for categorical variables.

Kruskal-Wallis test and Dunn-Bonferroni approach for pairwise comparison or ANOVA test and post hoc Sidak-Bonferroni test was applied for continuos variables.

TWL = total weight loss, BMI = body mass index, EWL = excess weight loss

Sleeve gastrectomy 2 years follow-up

Muraca E et al (in preparation)

a p \leq 0.05 vs IFG

^b p ≤ 0.05 vs T2DM

 $^{^{}c}$ p \leq 0.01 vs IFG

^d p ≤ 0.01 vs T2DM

Obesity is a relapsing disease

Maintenance of weight loss

Nordmo et al. Obes Rev, 2019 Fothergill E et al Obesity, 2016 Sumithran P et al N Engl J Med, 2011

Bariatric surgery is also associated with weight re-gain

Adams et al, N Engl J Med 2017 Cooper TC et al, Obes Surg 2015 Efficacy of Liraglutide 3.0 mg in Patients with Prior Bariatric Surgery

Median weight at each time point 50% of participants achieved a 28-week weight lower than their nadir post-surgical weight **-7.1** % -9.7 %

RYGB, roux-en-Y gastric bypass; LSG, laparoscopic sleeve gastrectomy; VBG, vertical banded gastroplasty; AGB adjustable gastric band.

Liraglutide 3.0 mg or Surgical Revision in Long-Term Weight Regain After RYBG

LSG + liraglutide 3.0 mg for patients desiring further weight loss

ORIGINAL CONTRIBUTIONS

Efficacy of High-dose Liraglutide 3.0 mg in Patients with Poor Response to Bariatric Surgery: Real-world Experience and Updated **Meta-analysis**

Federica Vinciguerra ¹ • Carla Di Stefano² · Roberto Baratta³ · Alfredo Pulvirenti⁴ · Giuseppe Mastrandrea⁵ · Luigi Piazza² · Fabio Guccione⁶ · Giuseppe Navarra⁶ · Lucia Frittitta^{1,7}

		BW 6	months		BW	baseline				
Study	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Horber FF et al. 2021	34		12.0000		84.00	13.0000		-7.00	[-12.95; -1.05]	17.6%
Elhag W et al. 2021	107	91.01	17.3000	107	96.75	18.6500	- - 	-5.74	[-10.56; -0.92]	26.8%
Rye P et al.2018	20	105.59	27.4900	20	117.92	27.9500		-12.33	[-29.51; 4.85]	2.1%
Vinciguerra F et al. 2023	59	93.30	17.6000	59	101.80	17.9000		-8.50	[-14.91; -2.09]	15.2%
Mok J et al. 2023	35	106.60	23.6000	35	116.10	23.6000		-9.50	[-20.56; 1.56]	5.1%
Current work	114	91.52	16.4900	119	100.96	17.2400	-	-9.44	[-13.77; -5.11]	33.2%
Common effect model Heterogeneity: $I^2 = 0\%$, τ^2	369 = 0, p =	0.89		374			<u></u>	-7.94	[-10.44; -5.44]	100.0%
							-20 -10 0 10 20			

MD	95%-CI	Weight
-5.74 -12.33	[-12.95; -1.05] [-10.56; -0.92] [-29.51; 4.85] [-14.91; -2.09] [-20.56; 1.56] [-13.77; -5.11]	17.6% 26.8% 2.1% 15.2% 5.1% 33.2%
-7.94	[-10.44; -5.44]	100.0%

Obesity is a relapsing disease

Maintenance of weight loss

The Role of Pharmacotherapy

Pre Bariatric Surgery

- 1. Treat Metabolic Syndrome:
 - ↑ EWL post-op ¹
 - ↓ Reduce hospital stay ¹
 - **↓** Post-op complications ²
- 2. Reduce Risk in Anesthesia
- 3. BMI > 65* pre-surgical weight loss is mandatory to reduce intra-abdominal volume and achieve operability ³
- 4. Patients non-responsive to lifestyle intervention ⁴

^{*} BMI > 55 main risk factor for unfavourable outcomes (SICOB guidelines 2016)

Post Bariatric Surgery

- Weight Regain ⁵ (≥ 25 weight loss)
- 2. Insufficient Weight Loss ⁵ (< 50% EWL)
- 3. Patients desiring further weight loss ⁶

 Patients with no indication for bariatric surgery ⁷ (BMI < 40): endoscopic surgery

Stepped approach to obesity management

BMI 35-39.9 kg/m² BMI 25-26.9 kg/m² BMI 27-29.9 kg/m² BMI 30-34.9 kg/m² BMI ≥40 kg/m² When optimal medical Surgery With and behavioural adiposity-related complications management has been insufficient Pharmacotherapy With adiposity-related complications Behavioural modification All individuals, regardless of body size or composition, benefit from a healthy, well-balanced eating pattern and regular physical activity

BMI, body mass index.

Bariatric surgery is the most effective treatment for sustained weight loss in morbid obesity

GLP-1, glucagon-like peptide 1; OSA, obstructive sleep apnea: PYY, peptide YY.

Liraglutide 3.0 mg

What is GLP-1?

- GLP-1 is a peptide comprised of 31 amino acids
- Member of incretin family
- Secreted predominantly from L-cells in the gut, but also the brain (nucleus tractus solitarius)

Human endogenous GLP-1

Enzymatic degradation by DPP-4 $t_{1/2}$ =1.5-2 min

GLP-1 is released in response to food intake

GLP-1 secretion and receptor expression **GLP-1R** is expressed in: **GLP-1** is secreted by: Neurons in Brain hindbrain L-cells of Lung the gut Heart (AV node) Pancreas Kidney

GI tract

GLP-1 increases satiety and reduces hunger

In normal weight subjects

Infusion increased plasma GLP-1 from 10 pmol/L to 60-90 pmol/L

^{*}At an ad libitum lunch during GLP-1 or saline infusion in 19 healthy normal-weight male subjects. Data are mean ± SEM. GLP-1, glucagon-like peptide-1; SEM, standard error of mean

Adapted from: Flint et al. J Clin Invest 1998;101:515-20

Il GLP-1 ha valore clinico limitato per la sua breve emivita

Inattivazione proteolitica da parte di DPP-IV

Clivaggio enzimatico

Clearance elevata (4–9 L/min)

 $t_{1/2}$ =1.5-2.1 min (bolo ev 2.5-25.0 nmol/L)

Liraglutide is a once-daily, human GLP-1 analogue

 $(T_{1/2}=13 h)$

DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; PK, pharmacokinetics; T_{1/2}, plasma half-life

Liraglutide 3.0 mg

es. h: 1.61 m, w: 70 kg

Overweight

BMI \geq 27 kg/m²

+ ≥ 1 comorbidities [such as dysglycaemia (prediabetes or T2D), hypertension, dyslipidaemia or OSAS]

Obesity

BMI \geq 30 kg/m²

es. h: 1.61 m, w: 78 kg

Liraglutide increases satiety and reduces hunger

Via neurons in the arcuate nucleus

The Role of Pharmacotherapy

Pre Bariatric Surgery

1. Treat Metabolic Syndrome:

- ↑ EWL post-op ¹
- ♣ Reduce hospital stay ¹
- ↓ Post-op complications ²
- 2. Reduce Risk in Anesthesia
- 3. BMI > 65 pre-surgical weight loss is mandatory to reduce intra-abdominal volume and achieve operability ³
- 4. Patients non-responsive to lifestyle intervention ⁴

^{*} BMI > 55 main risk factor for unfavourable outcomes (SICOB guidelines 2016)

Change in body weight (%)

SCALE Obesity and Prediabetes: 0-56 weeks

FAS, fasting visit data only. Line graphs are observed means (±SE). Statistical analysis is ANCOVA. FAS, full analysis set; LOCF, last observation carried forward; SE, standard error

Lifestyle intervention: -500 kcal/day diet + 150 min/week physical activity

Categorical weight loss

SCALE Obesity and Prediabetes: At week 56

Data are observed means for the full analysis set (with LOCF) and the odds ratios (OR) shown are from a logistic regression analysis (the analysis for achieving 15% weight loss was performed post hoc). LOCF, last observation carried forward; OR, odds ratio

Visceral fat and ectopic fat reduction by MRI

One mechanism associated with benefits on infertility

Change in fasting glucose and fasting insulin

SCALE Obesity and Prediabetes: At week 172

The Role of Pharmacotherapy

Post Bariatric Surgery

- .. Weight Regain ⁵ (≥ 25 weight loss)
- 2. Insufficient Weight Loss ⁵ (< 50% EWL)
- 3. Patients desiring further weight loss ⁶

 Patients with no indication for bariatric surgery ⁷ (BMI < 40): endoscopic surgery

Liraglutide 3.0 mg in inadequate weight loss (IWL) or weight regain (WR) after primary or revisional surgery

- 22% inadequate weight loss
- 78% weight regain

Liraglutide start: 56 months postop

- 42% inadequate weight loss
- 58% weight regain

Liraglutide start: 42 months postop

RYGB, Roux-en-Y gastric bypass; LSG, laparoscopic sleeve gastrectomy; LAGB, laparoscopic adjustable gastric banding; SADI, single-anastomosis duodeno-ileal bypass.

Endoscopic sleeve gastroplasty plus liraglutide 3.0 mg vs endoscopic sleeve gastroplasty alone for weight loss

